Source code for models.derpp_star

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from datasets.utils.continual_dataset import ContinualDataset
from torch.nn import functional as F

from models.utils.continual_model import ContinualModel
from utils.args import add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer
from models.star_utils.star_perturber import Perturber, add_perturb_args


[docs] class DerppSTAR(ContinualModel): NAME = 'derpp_star' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual'] def __init__(self, backbone, loss, args, transform, dataset=None): super(DerppSTAR, self).__init__(backbone, loss, args, transform, dataset) self.pert = Perturber(self) self.buffer = Buffer(self.args.buffer_size, self.device)
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) # add arguments for STAR add_perturb_args(parser) parser.add_argument('--alpha', type=float, required=True, help='Penalty weight.') parser.add_argument('--beta', type=float, required=True, help='Penalty weight.') return parser
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch): self.opt.zero_grad() loss = 0 if not self.buffer.is_empty(): # STAR here buf_inputs, buf_labels, _ = self.buffer.get_data( self.args.minibatch_size, transform=self.transform) self.pert(buf_inputs, buf_labels) # normal DER++ buf_inputs, _, buf_logits = self.buffer.get_data( self.args.minibatch_size, transform=self.transform) buf_outputs = self.net(buf_inputs) loss += self.args.alpha * F.mse_loss(buf_outputs, buf_logits) buf_inputs, buf_labels, _ = self.buffer.get_data( self.args.minibatch_size, transform=self.transform) buf_outputs = self.net(buf_inputs) loss += self.args.beta * self.loss(buf_outputs, buf_labels) outputs = self.net(inputs) loss += self.loss(outputs, labels) loss.backward() self.opt.step() self.buffer.add_data(examples=not_aug_inputs, labels=labels, logits=outputs.data) return loss.item()