Source code for models.derpp_cscct

import torch
from torch.nn import functional as F

from utils.args import add_rehearsal_args, ArgumentParser
from models.cscct_utils.cscct_model import CscCtModel


[docs] class DerppCscCt(CscCtModel): """Continual learning via Dark Experience Replay++. Treated with CSCCT!""" NAME = 'derpp_cscct' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) parser.add_argument('--alpha', type=float, required=True, help='Penalty weight.') parser.add_argument('--beta', type=float, required=True, help='Penalty weight.') CscCtModel.add_cscct_args(parser) return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super().__init__(backbone, loss, args, transform, dataset)
[docs] def observe(self, inputs: torch.Tensor, labels: torch.Tensor, not_aug_inputs: torch.Tensor, epoch=None): self.opt.zero_grad() outputs = self.net(inputs) loss = self.loss(outputs, labels) if not self.buffer.is_empty(): buf_inputs, _, buf_logits = self.buffer.get_data( self.args.minibatch_size, transform=self.transform) buf_outputs = self.net(buf_inputs) derpp_loss = self.args.alpha * F.mse_loss(buf_outputs, buf_logits) buf_inputs, buf_labels, _ = self.buffer.get_data( self.args.minibatch_size, transform=self.transform) buf_outputs = self.net(buf_inputs) derpp_loss += self.args.beta * self.loss(buf_outputs, buf_labels) loss += derpp_loss if self.current_task > 0 and self.args.csc_weight > 0 and self.args.ct_weight > 0: # concatenate stream with buf full_inputs = torch.cat([inputs, buf_inputs], dim=0) full_targets = torch.cat([labels, buf_labels], dim=0) cscct_loss = self.get_cscct_loss(full_inputs, full_targets) loss += cscct_loss loss.backward() self.opt.step() if self.args.buffer_size > 0: self.buffer.add_data(examples=not_aug_inputs, labels=labels, logits=outputs.data) return loss.item()