Source code for models.der

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from torch.nn import functional as F

from models.utils.continual_model import ContinualModel
from utils.args import ArgumentParser, add_rehearsal_args
from utils.buffer import Buffer


[docs] class Der(ContinualModel): """Continual learning via Dark Experience Replay.""" NAME = 'der' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) parser.add_argument('--alpha', type=float, required=True, help='Penalty weight.') return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super(Der, self).__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size)
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): self.opt.zero_grad() tot_loss = 0 outputs = self.net(inputs) loss = self.loss(outputs, labels) loss.backward() tot_loss += loss.item() if not self.buffer.is_empty(): buf_inputs, buf_logits = self.buffer.get_data( self.args.minibatch_size, transform=self.transform, device=self.device) buf_outputs = self.net(buf_inputs) loss_mse = self.args.alpha * F.mse_loss(buf_outputs, buf_logits) loss_mse.backward() tot_loss += loss_mse.item() self.opt.step() self.buffer.add_data(examples=not_aug_inputs, logits=outputs.data) return tot_loss