Source code for models.agem_r

"""
A version of A-GEM, leveraging a memory buffer with reservoir sampling.
"""

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import torch

from models.agem import project
from models.gem import overwrite_grad, store_grad
from models.utils.continual_model import ContinualModel
from utils.args import add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer


[docs] class AGemr(ContinualModel): """Continual learning via A-GEM, leveraging a reservoir buffer.""" NAME = 'agem_r' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super(AGemr, self).__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size) self.grad_dims = [] for param in self.parameters(): self.grad_dims.append(param.data.numel()) self.grad_xy = torch.Tensor(np.sum(self.grad_dims)).to(self.device) self.grad_er = torch.Tensor(np.sum(self.grad_dims)).to(self.device)
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): self.zero_grad() p = self.net.forward(inputs) loss = self.loss(p, labels) loss.backward() if not self.buffer.is_empty(): store_grad(self.parameters, self.grad_xy, self.grad_dims) buf_inputs, buf_labels = self.buffer.get_data(self.args.minibatch_size, device=self.device) self.net.zero_grad() buf_outputs = self.net.forward(buf_inputs) penalty = self.loss(buf_outputs, buf_labels) penalty.backward() store_grad(self.parameters, self.grad_er, self.grad_dims) dot_prod = torch.dot(self.grad_xy, self.grad_er) if dot_prod.item() < 0: g_tilde = project(gxy=self.grad_xy, ger=self.grad_er) overwrite_grad(self.parameters, g_tilde, self.grad_dims) else: overwrite_grad(self.parameters, self.grad_xy, self.grad_dims) self.opt.step() self.buffer.add_data(examples=not_aug_inputs, labels=labels) return loss.item()