Source code for datasets.seq_resisc45

import os
from typing import Tuple
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import Dataset
import numpy as np
from PIL import Image
import yaml

from datasets.utils import set_default_from_args
from utils import smart_joint
from utils.conf import base_path
from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders
from datasets.transforms.denormalization import DeNormalize
from torchvision.transforms.functional import InterpolationMode
from utils.prompt_templates import templates


[docs] class Resisc45(Dataset): N_CLASSES = 45 LABELS = [ 'airplane', 'airport', 'baseball_diamond', 'basketball_court', 'beach', 'bridge', 'chaparral', 'church', 'circular_farmland', 'cloud', 'commercial_area', 'dense_residential', 'desert', 'forest', 'freeway', 'golf_course', 'ground_track_field', 'harbor', 'industrial_area', 'intersection', 'island', 'lake', 'meadow', 'medium_residential', 'mobile_home_park', 'mountain', 'overpass', 'palace', 'parking_lot', 'railway', 'railway_station', 'rectangular_farmland', 'river', 'roundabout', 'runway', 'sea_ice', 'ship', 'snowberg', 'sparse_residential', 'stadium', 'storage_tank', 'tennis_court', 'terrace', 'thermal_power_station', 'wetland', ] def __init__(self, root, train=True, transform=None, target_transform=None, download=False) -> None: self.root = root self.train = train self.transform = transform self.target_transform = target_transform self.not_aug_transform = transforms.Compose([ transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor()] ) if download: if os.path.isdir(root) and len(os.listdir(root)) > 0: print('Download not needed, files already on disk.') else: # download from https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar print("Downloading resisc45 dataset...") ln = 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EbxMu5z5HbVIkG9qFCGbg7ABDRZvpBEA8uqVC-Em9HYVug?e=Cfc4Yc' from onedrivedownloader import download download(ln, filename=os.path.join(root, 'resisc45.tar.gz'), unzip=True, unzip_path=root, clean=True) print("Done!") if self.train: data_config = yaml.load(open(smart_joint(root, 'resisc45_train.yaml')), Loader=yaml.Loader) else: data_config = yaml.load(open(smart_joint(root, 'resisc45_test.yaml')), Loader=yaml.Loader) self.data = np.array([smart_joint(root, d) for d in data_config['data']]) self.targets = np.array(data_config['targets']).astype(np.int16) def __len__(self): return len(self.targets) def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. :param index: index of the element to be returned :returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] img = Image.open(img).convert('RGB') original_img = img.copy() not_aug_img = self.not_aug_transform(original_img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if not self.train: return img, target if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] return img, target, not_aug_img
[docs] class SequentialResisc45(ContinualDataset): NAME = 'seq-resisc45' SETTING = 'class-il' N_TASKS = 9 N_CLASSES_PER_TASK = 45 // N_TASKS N_CLASSES = 45 SIZE = (224, 224) MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] TRANSFORM = transforms.Compose([ transforms.RandomResizedCrop(SIZE[0], interpolation=InterpolationMode.BICUBIC), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MEAN, STD), ]) TEST_TRANSFORM = transforms.Compose([ transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC), transforms.CenterCrop(SIZE), transforms.ToTensor(), transforms.Normalize(MEAN, STD) ])
[docs] def get_data_loaders(self): train_dataset = Resisc45(base_path() + 'NWPU-RESISC45', train=True, download=True, transform=self.TRANSFORM) test_dataset = Resisc45(base_path() + 'NWPU-RESISC45', train=False, download=True, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names classes = [x.replace('_', ' ') for x in Resisc45.LABELS] classes = fix_class_names_order(classes, self.args) self.class_names = classes return classes
[docs] @staticmethod def get_prompt_templates(): return templates['eurosat']
[docs] @staticmethod def get_transform(): return transforms.Compose([transforms.ToPILImage(), SequentialResisc45.TRANSFORM])
[docs] @set_default_from_args("backbone") def get_backbone(): return "vit"
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_normalization_transform(): return transforms.Normalize(mean=SequentialResisc45.MEAN, std=SequentialResisc45.STD)
[docs] @staticmethod def get_denormalization_transform(): return DeNormalize(mean=SequentialResisc45.MEAN, std=SequentialResisc45.STD)
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 30
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 128