Source code for datasets.seq_cropdisease

import json
import os
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import Dataset
import numpy as np
from PIL import Image
from typing import Tuple

from datasets.utils import set_default_from_args
from utils import smart_joint
from utils.conf import base_path
from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders
from datasets.transforms.denormalization import DeNormalize
from torchvision.transforms.functional import InterpolationMode
from utils.prompt_templates import templates


[docs] class CropDisease(Dataset): LABELS = [ "Apple___Apple_scab", "Apple___Black_rot", "Apple___healthy", "Blueberry___healthy", "Cherry___Powdery_mildew", "Cherry___healthy", "Corn___Cercospora_leaf_spot Gray_leaf_spot", "Corn___Common_rust", "Corn___Northern_Leaf_Blight", "Corn___healthy", "Grape___Black_rot", "Grape___Esca_(Black_Measles)", "Grape___Leaf_blight_(Isariopsis_Leaf_Spot)", "Grape___healthy", "Orange___Haunglongbing_(Citrus_greening)", "Peach___Bacterial_spot", "Pepper,_bell___Bacterial_spot", "Pepper,_bell___healthy", "Potato___Early_blight", "Potato___Late_blight", "Raspberry___healthy", "Soybean___healthy", "Squash___Powdery_mildew", "Strawberry___Leaf_scorch", "Strawberry___healthy", "Tomato___Bacterial_spot", "Tomato___Early_blight", "Tomato___Late_blight", "Tomato___Leaf_Mold", "Tomato___Septoria_leaf_spot", "Tomato___Spider_mites Two-spotted_spider_mite", "Tomato___Target_Spot", "Tomato___Tomato_Yellow_Leaf_Curl_Virus", "Tomato___Tomato_mosaic_virus", "Tomato___healthy", ] def __init__(self, root, train=True, transform=None, target_transform=None, download=False) -> None: self.root = root self.train = train self.transform = transform self.target_transform = target_transform self.not_aug_transform = transforms.Compose([ transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor()] ) if download: if os.path.isdir(root) and len(os.listdir(root)) > 0: print('Download not needed, files already on disk.') else: from onedrivedownloader import download ln = "https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EZUaXKQUAVBPrhjHTUdflDEBNu0YiPWrdpAdDhnEU4nD2A?e=GPrCYF" print('Downloading dataset') parent_dir = os.path.dirname(root) download(ln, filename=os.path.join(root, 'cropdisease.tar.gz'), unzip=True, unzip_path=parent_dir, clean=True) filename = smart_joint(root, ('train' if train else 'test') + '.json') with open(filename) as f: data_config = json.load(f) self.data = np.array([smart_joint(root, 'images', d) for d in data_config['data']]) self.targets = np.array(data_config['labels']).astype(np.int16) def __len__(self): return len(self.targets) def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. :param index: index of the element to be returned :returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] img = Image.open(img).convert('RGB') original_img = img.copy() not_aug_img = self.not_aug_transform(original_img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if not self.train: return img, target if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] return img, target, not_aug_img
[docs] class SequentialCropDisease(ContinualDataset): NAME = 'seq-cropdisease' SETTING = 'class-il' N_TASKS = 7 N_CLASSES = 35 N_CLASSES_PER_TASK = N_CLASSES // N_TASKS SIZE = (224, 224) MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] TRANSFORM = transforms.Compose([ transforms.RandomResizedCrop(SIZE, interpolation=InterpolationMode.BICUBIC), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), ]) TEST_TRANSFORM = transforms.Compose([ transforms.Resize(size=SIZE, interpolation=InterpolationMode.BICUBIC), transforms.CenterCrop(SIZE), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), ])
[docs] def get_data_loaders(self): train_dataset = CropDisease(base_path() + 'cropdisease', train=True, download=True, transform=self.TRANSFORM) test_dataset = CropDisease(base_path() + 'cropdisease', train=False, download=True, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names classes = [x.replace('_', ' ') for x in CropDisease.LABELS] # .split('___')[-1] classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names
[docs] @staticmethod def get_prompt_templates(): return templates['cifar100']
[docs] @staticmethod def get_transform(): transform = transforms.Compose( [transforms.ToPILImage(), SequentialCropDisease.TRANSFORM]) return transform
[docs] @set_default_from_args("backbone") def get_backbone(): return "vit"
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_normalization_transform(): return transforms.Normalize(mean=SequentialCropDisease.MEAN, std=SequentialCropDisease.STD)
[docs] @staticmethod def get_denormalization_transform(): transform = DeNormalize(SequentialCropDisease.MEAN, SequentialCropDisease.STD) return transform
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 5
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 128