Source code for datasets.seq_cifar100

# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from argparse import Namespace
from typing import Tuple

import torch.nn.functional as F
import torch.optim
import torchvision.transforms as transforms
from PIL import Image
from torchvision.datasets import CIFAR100

from backbone.ResNetBlock import resnet18
from datasets.transforms.denormalization import DeNormalize
from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order,
                                              store_masked_loaders)
from utils.conf import base_path
from datasets.utils import set_default_from_args


[docs] class TCIFAR100(CIFAR100): """Workaround to avoid printing the already downloaded messages.""" def __init__(self, root, train=True, transform=None, target_transform=None, download=False) -> None: self.root = root super(TCIFAR100, self).__init__(root, train, transform, target_transform, download=not self._check_integrity())
[docs] class MyCIFAR100(CIFAR100): """ Overrides the CIFAR100 dataset to change the getitem function. """ def __init__(self, root, train=True, transform=None, target_transform=None, download=False) -> None: self.not_aug_transform = transforms.Compose([transforms.ToTensor()]) self.root = root super(MyCIFAR100, self).__init__(root, train, transform, target_transform, not self._check_integrity()) def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. Args: index: index of the element to be returned Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] # to return a PIL Image img = Image.fromarray(img, mode='RGB') original_img = img.copy() not_aug_img = self.not_aug_transform(original_img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] return img, target, not_aug_img
[docs] class SequentialCIFAR100(ContinualDataset): """Sequential CIFAR100 Dataset. Args: NAME (str): name of the dataset. SETTING (str): setting of the dataset. N_CLASSES_PER_TASK (int): number of classes per task. N_TASKS (int): number of tasks. N_CLASSES (int): number of classes. SIZE (tuple): size of the images. MEAN (tuple): mean of the dataset. STD (tuple): standard deviation of the dataset. TRANSFORM (torchvision.transforms): transformation to apply to the data.""" NAME = 'seq-cifar100' SETTING = 'class-il' N_CLASSES_PER_TASK = 10 N_TASKS = 10 N_CLASSES = N_CLASSES_PER_TASK * N_TASKS SIZE = (32, 32) MEAN, STD = (0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761) TRANSFORM = transforms.Compose( [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs] def get_examples_number(self) -> int: train_dataset = MyCIFAR100(base_path() + 'CIFAR10', train=True, download=True) return len(train_dataset.data)
[docs] def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: transform = self.TRANSFORM test_transform = transforms.Compose( [transforms.ToTensor(), self.get_normalization_transform()]) train_dataset = MyCIFAR100(base_path() + 'CIFAR100', train=True, download=True, transform=transform) test_dataset = TCIFAR100(base_path() + 'CIFAR100', train=False, download=True, transform=test_transform) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] @staticmethod def get_transform(): transform = transforms.Compose( [transforms.ToPILImage(), SequentialCIFAR100.TRANSFORM]) return transform
[docs] @set_default_from_args("backbone") def get_backbone(): return "resnet18"
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_normalization_transform(): transform = transforms.Normalize(SequentialCIFAR100.MEAN, SequentialCIFAR100.STD) return transform
[docs] @staticmethod def get_denormalization_transform(): transform = DeNormalize(SequentialCIFAR100.MEAN, SequentialCIFAR100.STD) return transform
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 50
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 32
@set_default_from_args('lr_scheduler') def get_scheduler_name(self): return 'multisteplr'
[docs] @set_default_from_args('lr_milestones') def get_scheduler_name(self): return [35, 45]
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names classes = CIFAR100(base_path() + 'CIFAR100', train=True, download=True).classes classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names