# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from argparse import Namespace
from typing import Tuple
import torch.nn.functional as F
import torch.optim
import torchvision.transforms as transforms
from PIL import Image
from torchvision.datasets import CIFAR100
from backbone.ResNetBlock import resnet18
from datasets.transforms.denormalization import DeNormalize
from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order,
store_masked_loaders)
from utils.conf import base_path
from datasets.utils import set_default_from_args
[docs]
class TCIFAR100(CIFAR100):
"""Workaround to avoid printing the already downloaded messages."""
def __init__(self, root, train=True, transform=None,
target_transform=None, download=False) -> None:
self.root = root
super(TCIFAR100, self).__init__(root, train, transform, target_transform, download=not self._check_integrity())
[docs]
class MyCIFAR100(CIFAR100):
"""
Overrides the CIFAR100 dataset to change the getitem function.
"""
def __init__(self, root, train=True, transform=None,
target_transform=None, download=False) -> None:
self.not_aug_transform = transforms.Compose([transforms.ToTensor()])
self.root = root
super(MyCIFAR100, self).__init__(root, train, transform, target_transform, not self._check_integrity())
def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]:
"""
Gets the requested element from the dataset.
Args:
index: index of the element to be returned
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.targets[index]
# to return a PIL Image
img = Image.fromarray(img, mode='RGB')
original_img = img.copy()
not_aug_img = self.not_aug_transform(original_img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
if hasattr(self, 'logits'):
return img, target, not_aug_img, self.logits[index]
return img, target, not_aug_img
[docs]
class SequentialCIFAR100(ContinualDataset):
"""Sequential CIFAR100 Dataset.
Args:
NAME (str): name of the dataset.
SETTING (str): setting of the dataset.
N_CLASSES_PER_TASK (int): number of classes per task.
N_TASKS (int): number of tasks.
N_CLASSES (int): number of classes.
SIZE (tuple): size of the images.
MEAN (tuple): mean of the dataset.
STD (tuple): standard deviation of the dataset.
TRANSFORM (torchvision.transforms): transformation to apply to the data."""
NAME = 'seq-cifar100'
SETTING = 'class-il'
N_CLASSES_PER_TASK = 10
N_TASKS = 10
N_CLASSES = N_CLASSES_PER_TASK * N_TASKS
SIZE = (32, 32)
MEAN, STD = (0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)
TRANSFORM = transforms.Compose(
[transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
[docs]
def get_examples_number(self) -> int:
train_dataset = MyCIFAR100(base_path() + 'CIFAR10', train=True,
download=True)
return len(train_dataset.data)
[docs]
def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]:
transform = self.TRANSFORM
test_transform = transforms.Compose(
[transforms.ToTensor(), self.get_normalization_transform()])
train_dataset = MyCIFAR100(base_path() + 'CIFAR100', train=True,
download=True, transform=transform)
test_dataset = TCIFAR100(base_path() + 'CIFAR100', train=False,
download=True, transform=test_transform)
train, test = store_masked_loaders(train_dataset, test_dataset, self)
return train, test
[docs]
@set_default_from_args("backbone")
def get_backbone():
return "resnet18"
[docs]
@staticmethod
def get_loss():
return F.cross_entropy
[docs]
@set_default_from_args('n_epochs')
def get_epochs(self):
return 50
[docs]
@set_default_from_args('batch_size')
def get_batch_size(self):
return 32
@set_default_from_args('lr_scheduler')
def get_scheduler_name(self):
return 'multisteplr'
[docs]
@set_default_from_args('lr_milestones')
def get_scheduler_name(self):
return [35, 45]
[docs]
def get_class_names(self):
if self.class_names is not None:
return self.class_names
classes = CIFAR100(base_path() + 'CIFAR100', train=True, download=True).classes
classes = fix_class_names_order(classes, self.args)
self.class_names = classes
return self.class_names