# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from argparse import Namespace
import logging
from typing import Tuple
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
from torchvision.datasets import CIFAR10
from utils.conf import base_path
from datasets.transforms.denormalization import DeNormalize
from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order,
store_masked_loaders)
from datasets.utils import set_default_from_args
[docs]
class TCIFAR10(CIFAR10):
"""Workaround to avoid printing the already downloaded messages."""
def __init__(self, root, train=True, transform=None,
target_transform=None, download=False) -> None:
self.root = root
super(TCIFAR10, self).__init__(root, train, transform, target_transform, download=not self._check_integrity())
[docs]
class MyCIFAR10(CIFAR10):
"""
Overrides the CIFAR10 dataset to change the getitem function.
"""
def __init__(self, root, train=True, transform=None,
target_transform=None, download=False) -> None:
self.not_aug_transform = transforms.Compose([transforms.ToTensor()])
self.root = root
super(MyCIFAR10, self).__init__(root, train, transform, target_transform, download=not self._check_integrity())
def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]:
"""
Gets the requested element from the dataset.
Args:
index: index of the element to be returned
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.targets[index]
# to return a PIL Image
img = Image.fromarray(img, mode='RGB')
original_img = img.copy()
not_aug_img = self.not_aug_transform(original_img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
if hasattr(self, 'logits'):
return img, target, not_aug_img, self.logits[index]
return img, target, not_aug_img
[docs]
class SequentialCIFAR10(ContinualDataset):
"""Sequential CIFAR10 Dataset.
Args:
NAME (str): name of the dataset.
SETTING (str): setting of the dataset.
N_CLASSES_PER_TASK (int): number of classes per task.
N_TASKS (int): number of tasks.
N_CLASSES (int): number of classes.
SIZE (tuple): size of the images.
MEAN (tuple): mean of the dataset.
STD (tuple): standard deviation of the dataset.
TRANSFORM (torchvision.transforms): transformations to apply to the dataset.
"""
NAME = 'seq-cifar10'
SETTING = 'class-il'
N_CLASSES_PER_TASK = 2
N_TASKS = 5
N_CLASSES = N_CLASSES_PER_TASK * N_TASKS
SIZE = (32, 32)
MEAN, STD = (0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2615)
TRANSFORM = transforms.Compose(
[transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
TEST_TRANSFORM = transforms.Compose([transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
def __init__(self, args, transform_type: str = 'weak'):
super().__init__(args)
assert transform_type in ['weak', 'strong'], "Transform type must be either 'weak' or 'strong'."
if transform_type == 'strong':
logging.info("Using strong augmentation for CIFAR10")
self.TRANSFORM = transforms.Compose(
[transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.ToTensor(),
transforms.Normalize(SequentialCIFAR10.MEAN, SequentialCIFAR10.STD)])
[docs]
def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]:
"""Class method that returns the train and test loaders."""
transform = self.TRANSFORM
train_dataset = MyCIFAR10(base_path() + 'CIFAR10', train=True,
download=True, transform=transform)
test_dataset = TCIFAR10(base_path() + 'CIFAR10', train=False,
download=True, transform=self.TEST_TRANSFORM)
train, test = store_masked_loaders(train_dataset, test_dataset, self)
return train, test
[docs]
@set_default_from_args("backbone")
def get_backbone():
return "resnet18"
[docs]
@staticmethod
def get_loss():
return F.cross_entropy
[docs]
@set_default_from_args('n_epochs')
def get_epochs(self):
return 50
[docs]
@set_default_from_args('batch_size')
def get_batch_size(self):
return 32
[docs]
def get_class_names(self):
if self.class_names is not None:
return self.class_names
classes = CIFAR10(base_path() + 'CIFAR10', train=True, download=True).classes
classes = fix_class_names_order(classes, self.args)
self.class_names = classes
return self.class_names