import os
import torch
import torchvision.transforms as transforms
from PIL import Image
from datasets.transforms.denormalization import DeNormalize
from datasets.utils import set_default_from_args
from datasets.utils.continual_dataset import ContinualDataset
from datasets.utils.continual_dataset import store_masked_loaders
from datasets.bias_celeba_utils.celeba import BiasCelebA
from utils.conf import base_path
[docs]
class CelebA(BiasCelebA):
# Attributes : '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive',
# 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose',
# 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows',
# 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair',
# 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open',
# 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin',
# 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns',
# 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings',
# 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace',
# 'Wearing_Necktie', 'Young'
def __init__(self, root, split="train", transform=None,
target_transform=None, download=False, version=None):
super().__init__(root, split=split, transform=transform,
target_transform=target_transform, download=download, version=version)
self.task_ids = self.task_number
self.not_aug_transform = transforms.Compose([transforms.ToTensor()])
self.transform = transform
def __getitem__(self, index):
imgname = self.data.iloc[index]
img_ = Image.open(os.path.join(self.image_folder, imgname))
original_img = img_.copy()
original_img = self.not_aug_transform(original_img)
targets = self.targets[index]
if self.transform is not None:
img = self.transform(img_)
return img, targets, original_img
[docs]
class SequentialCelebA(ContinualDataset):
NAME = 'seq-celeba'
SETTING = 'biased-class-il'
N_CLASSES_PER_TASK = 1
N_TASKS = 8
N_CLASSES = 8
SIZE = (224, 224)
MEAN, STD = (0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2615)
TRANSFORM = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
TEST_TRANSFORM = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
def __init__(self, args, split_id: int = 1):
super().__init__(args)
assert split_id in [1, 2], "Version not supported"
self.split_id = split_id
[docs]
def get_data_loaders(self):
transform = self.TRANSFORM
test_transform = self.TEST_TRANSFORM
train_dataset = CelebA(base_path(), split='train', transform=transform, download=True, version=self.split_id)
test_dataset = CelebA(base_path(), split='test', transform=test_transform, download=True, version=self.split_id)
train, test = store_masked_loaders(train_dataset, test_dataset, self)
return train, test
[docs]
@set_default_from_args('lr_scheduler')
def get_scheduler_name(self):
return 'cosine'
[docs]
@set_default_from_args("backbone")
def get_backbone(num_clusters=None, net_type=None):
return "resnet18_7x7_pt"
[docs]
@staticmethod
def get_loss():
return torch.nn.BCEWithLogitsLoss(reduction='none')
[docs]
@set_default_from_args('n_epochs')
def get_epochs():
return 25
[docs]
@set_default_from_args('batch_size')
def get_batch_size():
return 64