Source code for datasets.seq_cars196

import os
import sys
import torch
import torchvision.transforms as transforms
import torch.nn.functional as F
from PIL import Image
from typing import Tuple
from tqdm import tqdm
import json

try:
    import deeplake
except ImportError:
    raise NotImplementedError("Deeplake not installed. Please install with `pip install deeplake` to use this dataset.")

from utils.conf import base_path
from datasets.utils import set_default_from_args
from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders
from datasets.transforms.denormalization import DeNormalize
from torch.utils.data import Dataset
from torchvision.transforms.functional import InterpolationMode
from utils.prompt_templates import templates


[docs] def load_and_preprocess_cars196(train_str='train', names_only=False) -> Tuple[torch.Tensor, torch.Tensor, dict] | dict: """ Loads data from deeplake and preprocesses it to be stored locally. Args: train_str (str): 'train' or 'test'. names_only (bool): If True, returns the class names only. Returns: Tuple[torch.Tensor, torch.Tensor, dict] | dict: If names_only is False, returns a tuple of data, targets, and class_idx_to_name """ assert train_str in ['train', 'test'], "train_str must be 'train' or 'test'" ds = deeplake.load(f"hub://activeloop/stanford-cars-{train_str}") loader = ds.pytorch() class_names = ds['car_models'].info['class_names'] class_idx_to_name = {i: class_names[i] for i in range(len(class_names))} if names_only: return class_idx_to_name # Pre-process dataset data = [] targets = [] for x in tqdm(loader, desc=f'Pre-processing {train_str} dataset'): img = x['images'][0].permute(2, 0, 1) # load one image at a time if len(img) < 3: img = img.repeat(3, 1, 1) # fix rgb img = MyCars196.PREPROCESSING_TRANSFORM(img) # resize data.append(img) label = x['car_models'][0].item() # get label targets.append(label) data = torch.stack(data) # stack all images targets = torch.tensor(targets) return data, targets, class_idx_to_name
[docs] class MyCars196(Dataset): N_CLASSES = 196 """ Overrides the CIFAR100 dataset to change the getitem function. """ PREPROCESSING_TRANSFORM = transforms.Compose([ transforms.Resize(224, interpolation=InterpolationMode.BICUBIC, antialias=True), transforms.CenterCrop(224), ]) def __init__(self, root, train=True, transform=None, target_transform=None) -> None: self.root = root self.train = train self.transform = transform self.target_transform = target_transform self.not_aug_transform = transforms.ToTensor() train_str = 'train' if train else 'test' if not os.path.exists(f'{root}/{train_str}_images.pt'): print(f'Preparing {train_str} dataset...', file=sys.stderr) self.load_and_preprocess_dataset(root, train_str) else: print(f"Loading pre-processed {train_str} dataset...", file=sys.stderr) self.data = torch.load(f'{root}/{train_str}_images.pt') self.targets = torch.load(f'{root}/{train_str}_labels.pt') self.class_names = MyCars196.get_class_names()
[docs] def load_and_preprocess_dataset(self, root, train_str='train'): self.data, self.targets, class_idx_to_name = load_and_preprocess_cars196(train_str) print(f"Saving pre-processed dataset in {root} ({train_str}_images.pt and {train_str}_labels.py)...", file=sys.stderr) if not os.path.exists(root): os.makedirs(root) torch.save(self.data, f'{root}/{train_str}_images.pt') torch.save(self.targets, f'{root}/{train_str}_labels.pt') with open(f'{root}/class_names.json', 'wt') as f: json.dump(class_idx_to_name, f, indent=4) print('Done', file=sys.stderr)
[docs] @staticmethod def get_class_names(): if not os.path.exists(base_path() + f'cars196/class_names.json'): print("Class names not found, performing pre-processing...") class_idx_to_name = load_and_preprocess_cars196(names_only=True) print('Done', file=sys.stderr) else: with open(base_path() + f'cars196/class_names.json', 'rt') as f: class_idx_to_name = json.load(f) class_names = list(class_idx_to_name.values()) return class_names
def __len__(self): return len(self.targets) def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. Args: index: index of the element to be returned Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] img = Image.fromarray(img.permute(1, 2, 0).numpy(), mode='RGB') not_aug_img = self.not_aug_transform(img.copy()) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if not self.train: return img, target if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] return img, target, not_aug_img
[docs] class SequentialCars196(ContinualDataset): """ Sequential CARS196 Dataset. The images are loaded from deeplake, resized to 224x224, and store locally. """ NAME = 'seq-cars196' SETTING = 'class-il' N_TASKS = 10 N_CLASSES = 196 N_CLASSES_PER_TASK = [20] * 9 + [16] MEAN, STD = (0.0, 0.0, 0.0), (1.0, 1.0, 1.0) SIZE = (224, 224) TRANSFORM = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), ]) TEST_TRANSFORM = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD)]) # no transform for test
[docs] def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: train_dataset = MyCars196(base_path() + 'cars196', train=True, transform=self.TRANSFORM) test_dataset = MyCars196(base_path() + 'cars196', train=False, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] @staticmethod def get_prompt_templates(): return templates['cars196']
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names classes = MyCars196.get_class_names() classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names
[docs] @staticmethod def get_transform(): transform = transforms.Compose( [transforms.ToPILImage(), SequentialCars196.TRANSFORM]) return transform
[docs] @set_default_from_args("backbone") def get_backbone(): return "vit"
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_normalization_transform(): return transforms.Normalize(mean=SequentialCars196.MEAN, std=SequentialCars196.STD)
[docs] @staticmethod def get_denormalization_transform(): transform = DeNormalize(SequentialCars196.MEAN, SequentialCars196.STD) return transform
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 50
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 128