Source code for datasets.rot_mnist

# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch.nn.functional as F
import torchvision.transforms as transforms

from datasets.perm_mnist import MyMNIST, MNIST
from datasets.transforms.rotation import Rotation
from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders
from utils.conf import base_path
from datasets.utils import set_default_from_args
from torchvision.datasets import MNIST


[docs] class RotatedMNIST(ContinualDataset): """ The Rotated MNIST dataset. Args: NAME (str): name of the dataset. SETTING (str): setting of the dataset. N_CLASSES_PER_TASK (int): number of classes per task. N_TASKS (int): number of tasks. N_CLASSES (int): number of classes. SIZE (tuple): size of the images. """ NAME = 'rot-mnist' SETTING = 'domain-il' N_CLASSES_PER_TASK = 10 N_TASKS = 20 N_CLASSES = N_CLASSES_PER_TASK * N_TASKS SIZE = (28, 28)
[docs] def get_data_loaders(self): transform = transforms.Compose((Rotation(), transforms.ToTensor())) train_dataset = MyMNIST(base_path() + 'MNIST', train=True, download=True, transform=transform) test_dataset = MNIST(base_path() + 'MNIST', train=False, download=True, transform=transform) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] @set_default_from_args("backbone") def get_backbone(): return "mnistmlp"
[docs] @staticmethod def get_transform(): return None
[docs] @staticmethod def get_normalization_transform(): return None
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_denormalization_transform(): return None
[docs] @set_default_from_args('batch_size') def get_batch_size(self) -> int: return 128
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 1
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names classes = MNIST(base_path() + 'MNIST', train=True, download=True).classes classes = [c.split('-')[1].strip() for c in classes] classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names