Source code for backbone.ResNet32

import math
from torch import nn
from torch.nn import functional as F

from backbone import MammothBackbone, register_backbone, xavier


EPS_BATCH_NORM = 1e-4


[docs] def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
[docs] class IdentityShortcut(nn.Module): def __init__(self, planes): super(IdentityShortcut, self).__init__() self.planes = planes self.pad_dimension = planes // 4
[docs] def forward(self, x): x = x[:, :, ::2, ::2] # add padding to the channels dimension to match the output of the residual return F.pad(x, (0, 0, 0, 0, self.pad_dimension, self.pad_dimension))
[docs] class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, last=False): super(BasicBlock, self).__init__() self.last = last self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, eps=EPS_BATCH_NORM) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, eps=EPS_BATCH_NORM) self.downsample = downsample self.stride = stride
[docs] def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.bn1(out) out = self.conv2(out) # out = self.relu(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual if not self.last: out = self.relu(out) return out
[docs] class ResNet32(MammothBackbone): def __init__(self, depth=32, num_classes=1000): super().__init__() assert (depth - 2) % 6 == 0, 'When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202' n = (depth - 2) // 6 self.inplanes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.bn_initial = nn.BatchNorm2d(16, eps=EPS_BATCH_NORM) self.layer1 = self._make_layer(BasicBlock, 16, n) self.layer2 = self._make_layer(BasicBlock, 32, n, stride=2) self.layer3 = self._make_layer(BasicBlock, 64, n, stride=2, last=True) self.bn_final = nn.BatchNorm2d(64 * BasicBlock.expansion, eps=EPS_BATCH_NORM) self.relu = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(8) self.classifier = nn.Linear(64 * BasicBlock.expansion, num_classes) gain = math.sqrt(2) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels # m.kernel_size[0] * m.kernel_size[1] * m.out_channels # theano init HeNormal with gain='relu' (from Kaiming He et al. (2015): Delving deep into rectifiers: Surpassing human-level performance on imagenet classification) m.weight.data.normal_(0, gain * math.sqrt(1. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() self.classifier.weight.data.normal_(0, math.sqrt(1. / 64)) self.classifier.bias.data.zero_() # self.classifier.apply(xavier) def _make_layer(self, block, planes, blocks, stride=1, last=False): downsample = None if stride != 1: downsample = IdentityShortcut(planes) # downsample = nn.Sequential( # nn.Conv2d(self.inplanes, planes * block.expansion, # kernel_size=1, stride=stride, bias=False), # ) if last: blocks -= 1 layers = [block(self.inplanes, planes, stride, downsample)] self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) if last: layers.append(block(self.inplanes, planes, last=True)) return nn.Sequential(*layers)
[docs] def forward(self, x, returnt='out'): x = self.bn_initial(self.relu(self.conv1(x))) x = self.layer1(x) # 32x32 x = self.layer2(x) # 16x16 x = self.layer3(x) # 8x8 x = self.avgpool(x) features = x.view(x.size(0), -1) if returnt == 'features': return features out = self.classifier(features) if returnt == 'both': return (out, features) return out
[docs] @register_backbone('resnet32') def resnet32(num_classes: int, depth: int = 32): """ Constructs a ResNet-32 model, as used in 'iCaRL'. """ return ResNet32(num_classes=num_classes, depth=depth)