Source code for datasets.seq_cifar10

from typing import Tuple

import torchvision.transforms as transforms
from PIL import Image
from torchvision.datasets import CIFAR10

from utils.conf import base_path
from datasets import register_dataset
from datasets.utils.continual_dataset import (ContinualDataset, MammothDataset)


[docs] class MyCIFAR10(MammothDataset, CIFAR10): """ Overrides the CIFAR10 dataset to change the getitem function. """ def __init__(self, root, train=True, transform=None, target_transform=None) -> None: # not self._check_integrity() -> trick to avoid printing debug messages self.root = root super(MyCIFAR10, self).__init__(root, train, transform, target_transform, download=not self._check_integrity()) def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. Args: index: index of the element to be returned Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] # to return a PIL Image img = Image.fromarray(img, mode='RGB') original_img = img.copy() not_aug_img = self.not_aug_transform(original_img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target, not_aug_img
[docs] @register_dataset(name='seq-cifar10') class SequentialCIFAR10(ContinualDataset): """Sequential CIFAR10 Dataset. Args: NAME (str): name of the dataset. SETTING (str): setting of the dataset. N_CLASSES_PER_TASK (int): number of classes per task. N_TASKS (int): number of tasks. N_CLASSES (int): number of classes. MEAN (tuple): mean of the dataset. STD (tuple): standard deviation of the dataset. TRANSFORM (torchvision.transforms): transformations to apply to the dataset. """ NAME = 'seq-cifar10' SETTING = 'class-il' N_CLASSES_PER_TASK = 2 N_TASKS = 5 N_CLASSES = N_CLASSES_PER_TASK * N_TASKS SIZE = (32, 32) MEAN, STD = (0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2615) TRANSFORM = transforms.Compose( [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MEAN, STD)]) TEST_TRANSFORM = transforms.Compose([transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs] def get_data_loaders(self): """Class method that returns the train and test loaders.""" train_dataset = MyCIFAR10(base_path() + 'CIFAR10', train=True, transform=self.TRANSFORM) test_dataset = MyCIFAR10(base_path() + 'CIFAR10', train=False, transform=self.TEST_TRANSFORM) return train_dataset, test_dataset
[docs] @staticmethod def get_backbone(): return "resnet18"
[docs] @staticmethod def get_normalization_transform(): transform = transforms.Normalize(SequentialCIFAR10.MEAN, SequentialCIFAR10.STD) return transform