from typing import Tuple
import torchvision.transforms as transforms
from PIL import Image
from torchvision.datasets import CIFAR10
from utils.conf import base_path
from datasets import register_dataset
from datasets.utils.continual_dataset import (ContinualDataset, MammothDataset)
[docs]
class MyCIFAR10(MammothDataset, CIFAR10):
"""
Overrides the CIFAR10 dataset to change the getitem function.
"""
def __init__(self, root, train=True, transform=None, target_transform=None) -> None:
# not self._check_integrity() -> trick to avoid printing debug messages
self.root = root
super(MyCIFAR10, self).__init__(root, train, transform, target_transform, download=not self._check_integrity())
def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]:
"""
Gets the requested element from the dataset.
Args:
index: index of the element to be returned
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.targets[index]
# to return a PIL Image
img = Image.fromarray(img, mode='RGB')
original_img = img.copy()
not_aug_img = self.not_aug_transform(original_img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, not_aug_img
[docs]
@register_dataset(name='seq-cifar10')
class SequentialCIFAR10(ContinualDataset):
"""Sequential CIFAR10 Dataset.
Args:
NAME (str): name of the dataset.
SETTING (str): setting of the dataset.
N_CLASSES_PER_TASK (int): number of classes per task.
N_TASKS (int): number of tasks.
N_CLASSES (int): number of classes.
MEAN (tuple): mean of the dataset.
STD (tuple): standard deviation of the dataset.
TRANSFORM (torchvision.transforms): transformations to apply to the dataset.
"""
NAME = 'seq-cifar10'
SETTING = 'class-il'
N_CLASSES_PER_TASK = 2
N_TASKS = 5
N_CLASSES = N_CLASSES_PER_TASK * N_TASKS
SIZE = (32, 32)
MEAN, STD = (0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2615)
TRANSFORM = transforms.Compose(
[transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
TEST_TRANSFORM = transforms.Compose([transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs]
def get_data_loaders(self):
"""Class method that returns the train and test loaders."""
train_dataset = MyCIFAR10(base_path() + 'CIFAR10', train=True, transform=self.TRANSFORM)
test_dataset = MyCIFAR10(base_path() + 'CIFAR10', train=False, transform=self.TEST_TRANSFORM)
return train_dataset, test_dataset
[docs]
@staticmethod
def get_backbone():
return "resnet18"