Training-Free Open-Vocabulary Segmentation
with Offline Diffusion-Augmented Prototype Generation
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Abstract

Open-vocabulary semantic segmentation aims at seg-
menting arbitrary categories expressed in textual form. Pre-
vious works have trained over large amounts of image-
caption pairs to enforce pixel-level multimodal alignments.
However, captions provide global information about the
semantics of a given image but lack direct localization
of individual concepts. Further, training on large-scale
datasets inevitably brings significant computational costs.
In this paper, we propose FreeDA, a training-free diffusion-
augmented method for open-vocabulary semantic segmen-
tation, which leverages the ability of diffusion models to vi-
sually localize generated concepts and local-global similar-
ities to match class-agnostic regions with semantic classes.
Our approach involves an offline stage in which textual-
visual reference embeddings are collected, starting from a
large set of captions and leveraging visual and semantic
contexts. At test time, these are queried to support the visual
matching process, which is carried out by jointly consider-
ing class-agnostic regions and global semantic similarities.
Extensive analyses demonstrate that FreeDA achieves state-
of-the-art performance on five datasets, surpassing previ-
ous methods by more than 7.0 average points in terms of
mloU and without requiring any training. Our source code
is available at aimagelab.github.io/freeda.

1. Introduction

Semantic segmentation is a core problem in Computer Vi-
sion, which aims at partitioning an image into coherent re-
gions according to a set of semantic categories [25, 32]. As
manually annotating large-scale amounts of training data is
expensive, scaling segmentation to large sets of concepts
in a fully supervised manner is impracticable. This has re-
cently moved the focus of the community towards open-
vocabulary solutions [10, 13, 19, 24, 46, 49] that, learning
from a narrow set of seen categories or weak forms of su-
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Figure 1. Open-vocabulary segmentation with: (a) TCL [6],
which performs end-to-end learning of region-text alignment; (b)
our FreeDA, which leverages generated textual-visual embeddings
with global-local similarities and does not require any training.

pervision, are able to segment novel and unseen categories.
One of the major challenges in this setting is how to
transfer the ability to match texts and images of large-scale
vision-language models (e.g., CLIP [34] and ALIGN [16])
to a text-pixel alignment. Given a large-scale set of web-
crawled image-caption pairs, previous approaches [6, 27,
35, 43, 44, 52] force the ability to localize textual concepts
to emerge through contrastive learning techniques com-
bined with grounding mechanisms [6, 43, 44]. However,
captions often capture the global scene and might present
ambiguities with respect to fine-grained elements, making
this approach sub-optimal and computationally intensive.
On a different note, advances in diffusion models [14,
36] have shown remarkable results in text-to-image gener-
ation, and recent works have shown that their features en-
compass knowledge regarding the positioning of the gen-
erated objects [21, 39, 42]. This information can be ex-
ploited to generate large sets of attribution maps, which are
more active in the area corresponding to a semantic class,
thus providing a valuable source of information for seman-
tic segmentation. We propose to explore this mechanism as
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an alternative to multimodal contrastive training, in a fully

training-free methodology where no parameter is learned.

In contrast to previous works, our proposed approach
follows an efficient two-step protocol: in an offline stage,
we leverage a diffusion-augmented generation in which a
collection of textual-visual reference vectors is generated.
Then, at inference time, these references are retrieved to
compute local and global similarities to segment the input
image. In detail, we employ a large set of textual captions
to generate synthetic images and corresponding attribution
maps, through a localization mechanism based on cross-
attention. Subsequently, we leverage a self-supervised vi-
sual backbone, DINOv2 [33], to build an offline set of visual
prototypes associated with textual vectors, each represent-
ing the context of an instance in its synthetic scene.

At inference time, we extract both global features with
a multimodal encoder (i.e., CLIP) and local dense features
with DINOV2, characterized by high semantic relatedness,
and employ a superpixel algorithm to detect class-agnostic
regions. By querying the input textual category in the set of
textual-visual reference embeddings, we then assign each
superpixel to the category that exhibits the highest com-
bined similarity, between the global and local modalities.
As our approach is training-free and relies on Diffusion-
Augmented generation, we name it FreeDA.

We validate the proposed framework by conducting ex-
tensive experiments on Pascal VOC [11], Pascal Con-
text [30], COCO Stuff [4] and Object [23], Cityscapes [8],
and ADE20K [50, 51]. Without requiring any form of train-
ing, FreeDA consistently outperforms previous approaches
by a large margin, achieving state-of-the-art performance
on all datasets. Overall, our work demonstrates that non-
parametric approaches can provide a compelling and effi-
cient alternative for open-vocabulary semantic segmenta-
tion, and opens up new opportunities for subsequent works.
To sum up, the contributions of this paper are as follows:

* We introduce FreeDA, a novel training-free method for
open-vocabulary semantic segmentation based on the
generation of context-aware textual-visual reference em-
beddings through diffusion models.

* We present an inference pipeline that, leveraging the
semantic correspondence of DINOV2, superpixel algo-
rithms, and a combination of local and global similarities
achieves precise and robust segmentation prediction.

* Qur experiments show that our approach achieves state-
of-the-art performance on five datasets, without requiring
any form of training.

2. Related Work

Open-Vocabulary Semantic Segmentation. Building
upon the success of large-scale vision-language models in
zero-shot classification [16, 34], previous works on open-
vocabulary segmentation have investigated strategies to

transfer the multimodal image-text alignment toward finer
granularity (i.e., region or pixel level) [10, 13, 22, 43, 47].
A group of literature has been focusing on the super-
vision provided by dense annotations, available for a lim-
ited set of categories, to generalize on unseen classes.
OpenSeg [13] decouples the task in a region proposer and a
grounder that aligns regions to words from captions. Sim-
ilarly, OVSeg [22] employs a two-stage method, in which
class-agnostic regions are masked and provided to a CLIP
encoder with learnable visual prompts. SAN [47] combines
a side network with CLIP to propose regions while rec-
ognizing their corresponding semantic category. However,
these approaches are affected by performance gaps between
seen and unseen categories [10, 22] and, due to the costs of
dense annotations, can be applied in limited domains.
Other works have instead exploited contrastive train-
ing over a large set of image-text pairs, without dense an-
notations. GroupViT [43] proposes a Transformer archi-
tecture that learns to group image regions progressively.
MaskCLIP [52] adapts a frozen CLIP for dense predictions
through modifications in the last attention layer. TCL [6]
presents a grounding mechanism that learns to associate text
to regions during contrastive learning. OVSegmentor [44]
introduces a module based on slot attention to group tokens
of a Transformer and aligns them to captions. Our approach
falls into this research direction, since it relies only on a set
of captions as support, without requiring dense annotations.

Localization in Diffusion Models. Diffusion models [36]
have proven state-of-the-art performance in image genera-
tion. Few works tackle the task of localizing the concepts
mentioned in the conditioning captions during the genera-
tion. DAAM [39] proposes exploiting the cross-attention
mechanism that Stable Diffusion uses to extract attribu-
tion maps for the words mentioned in the prompt. Diffu-
Mask [42] leverages the advances of DAAM to generate
ground truth segmentation masks without human annotation
and train a segmentation model on them. GroundedDiffu-
sion [21] implements a grounding module to align textual
and visual embeddings during the diffusion process.

Some works have investigated the usage of diffusion
models for open-vocabulary segmentation. ODISE [45] em-
ploys Stable Diffusion as a feature extractor for its mask
generator. OVDiff [18] generates a set of visual references
at prediction time to support the segmentation process. Our
approach also relies on the generation of images; however,
this is done to collect visual prototypes during an offline
stage, a choice that significantly reduces the computational
load at prediction time.

Superpixel Algorithms. The concept of superpixel arises
from the observation that pixels are not a natural represen-
tation of an image. A superpixel is a group of homogeneous
pixels based on the visual characteristics of the image, such
as shape, brightness, color, and texture. Over the years,



several extraction strategies have been developed with the
goal of improving their quality and efficiency, such as
watershed-based [15, 28, 31] and clustering-based [1, 2, 20]
approaches. In this paper, we employ superpixels as a sup-
port for partitioning the image into class-agnostic regions,
from which local visual similarities are computed.

3. Proposed Method

The goal of open-vocabulary segmentation is to segment an
image according to an arbitrary set of categories represented
through free-form texts. Our training-free approach decou-
ples the task into two phases: a diffusion-augmented pro-
totype generation phase, which is carried out in an off-line
manner (visually represented in Figure 2), and a semantic
correspondence-based inference stage, which is employed
at test time to perform prediction over an input image. This
second stage is visually depicted in Figure 3.

3.1. Diffusion-Augmented Prototype Generation

During the pre-processing phase, we collect a large set of
visual prototypes and corresponding textual key embedding
vectors, which describe semantic instances along with their
textual and visual contexts. A textual key represents a se-
mantic category and its textual context as described in a cap-
tion. A visual prototype, instead, describes an instance of
that semantic category contextualized in an image. Collec-
tions of prototypes belonging to the same semantic class,
thus, represent examples of the visual variety of that class.

Extracting Localized Masks with Diffusion Models. As
prototypes will be employed to predict semantic classes in
a non-parametric way, it is crucial to build a large collection
of prototypes with high semantic variance. To this aim, we
generate a large set of real-world scenes using Stable Dif-
fusion [36] starting from a large set of captions. Generating
images rather than collecting real images from web-scale
datasets allows us to control the resulting semantic distribu-
tion and its variance. Most importantly, also, latent-based
diffusion models can predict the location of objects in the
generated scene [39].

Diffusion models, indeed, map word embeddings of the
conditioning text to the activations of their denoising sub-
network (e.g., U-Net [36, 37]) through cross-attention lay-
ers applied at different scales. Cross-attention activations,
therefore, relate each word of the conditioning caption to a
portion of the image and can be employed to generate weak
localization masks. As each layer of the denoising network
produces cross-attention maps at a different scale, we up-
scale all intermediate maps at the original image size. Then,
we collapse across heads, layers, and diffusion time steps to
obtain a single object mask.

Formally, the attribution map of a word w from the con-
ditioning caption over a generated image [ is expressed as

A person and a boat
under a tree at the lake
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Figure 2. Overview of the diffusion-augmented prototype gener-
ation phase of FreeDA. Visual prototypes are generated by pool-
ing self-supervised visual features on weak localization masks ex-
tracted from Stable Diffusion.

1
A(l,w) = mTg;bupsample(fl(Lw)t,l’h)7 (1)

where A(I,w) indicates the collection of cross-attention
maps with respect to the tokens of word w, and ¢, [, and h
index diffusion time steps, denoising layers, cross-attention
heads respectively. Finally, usample(-) denotes a bilinear
interpolation operator.

With the aforementioned approach for building localized
masks, we employ a set of captions, designed to describe
real images, to condition Stable Diffusion [36] and gener-
ate the corresponding set of synthetic images. Through a
noun parser [26], from each caption we also extract men-
tioned nouns {wy,...,wy} and obtain their correspond-
ing attribution maps A(I,w;) € R¥*W over the gener-
ated image. Then, we normalize the scores of the attribu-
tion maps in the range [—1, 1], apply a sigmoid function,
and binarize the result by thresholding it to a constant value
~. The output of this process is a weak localization mask
M(I,w;) € {0,1}>W for each noun w; mentioned in the
input caption.

Visual Prototypes Extraction. To encode the content of
the aforementioned weak localization masks, we adopt DI-
NOv2 [33], which showcases good localization and seman-
tic matching capabilities. Given a generated image I €
RE*XWx3 e extract its dense features v(I) € R# X 7 Xdv,
where P is the input patch size of the backbone and d,, is the
dimensionality of its embedding space. For every noun w;
in the sentence, we interpolate the weak localization mask
M (I,w;) to the size of the dense features, obtaining a re-
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Figure 3. Overview of the inference process in FreeDA. Local (region-level) and global similarities are computed by employing, respec-
tively, visual self-supervised and multimodal contrastive embedding spaces, and by comparing them with input texts and prototypes, built

during the off-line stage.

sized version of the localization mask M (I, w;) € R? X%
Then, we perform a region pooling operation to aggregate
visual features over the localization mask, as follows:

ol r) — S S v
SR>

where square brackets indicate indexing over spatial axes.
The resulting vector p(I, w;) € RPv is the visual prototype
for the noun w; extracted from the input image /, and is de-
fined as the mean of the dense features covered by the corre-
sponding binary mask. Prototypes built with this approach
embed a visual descriptor of the corresponding word local-
ized in a synthetic context, obtained from a real description.

[h w]M (I w; ) [h, w]
(I w;)[h, w]

; (@)

Textual Keys Extraction. In addition to representing vi-
sual prototypes, we employ a text encoder to represent
nouns in their lexical context. To this aim, we define a set
of textual templates 7 (e.g., A photo of a [NOUN]),
and embed each noun in all templates. This results in a
textual embedding for each template, ¢;(w) € RPt i =

., T, where T is the number of templates. We define

t(w) = M as the mean noun embedding, and then
linearly interpolate with the full caption embedding ¢ to also
capture the global context of the entire scene. Specifically,
the resulting textual key vector k(c, w) for a word w taken
from a caption c is then defined as

= at(w) +

where o € (0, 1) is a scalar weight. Similar to prototypes,
keys obtained through this process represent nouns contex-
tualized in the caption in which they have been extracted.
As each textual key is associated with a visual prototype,
the set of textual keys extracted from a dataset can be in-

k(c,w) (1-a)é, 3)

dexed via an approximate nearest neighbor search to effi-
ciently retrieve visual prototypes given a textual query.

3.2. Training-Free Mask Prediction

At inference time, our goal is to query the keys of the pre-
built collection index to retrieve their corresponding proto-
types. Then, we employ these prototypes as references to
segment the input image through semantic correspondence
with both local and global features.

Retrieving Prototypes. Given a set of textual categories
{c1,...,cs}, we consider the same set of templates T em-
ployed during textual keys computation and embed each

T

category as t(c;) = M, where ¢;(c;) is the text em-
bedding of a template applied on a category. For each cat-
egory c;, we leverage £(c;) to query the key embeddings of
the pre-built collection index and retrieve the K most simi-
lar ones according to cosine similarity. Each key embedding
corresponds to the combination of the text embeddings of
both a noun and the caption in which the noun is mentioned,
and is uniquely linked with a visual prototype. Hence, we
compute a representative visual prototype for each category
as the mean of retrieved prototypes. Formally,

25:1 Pik
)

% “)

plci) =
where {pik}szl is the set of retrieved prototypes for the
given category c;.

Superpixel-based Local Regions. Once a visual repre-
sentation of a class has been obtained through the afore-
mentioned procedure, a straightforward solution to predict
a segmentation mask for an image I would be computing
the semantic correspondences (i.e., cosine similarities) for



each of its dense feature v(I) against the representative pro-
totypes of input categories p([,¢;), 4 = 1,...,S, and
interpolate the result to the original image size. However,
such an approach would lead to noisy segmentation masks.

In particular, it has been observed that DINOv2 shows
good matching properties across objects from different im-
ages, but lacks in recognizing shapes and boundaries [48].
Hence, we propose to exploit a superpixel algorithm (i.e.,
the Felzenszwalb’s algorithm [12]) to partition the image by
grouping pixels into class-agnostic non-overlapping regions
according to their visual appearances and positions.

Each superpixel can be interpreted as a binary mask
R € {0,1}*W that is active on pixels belonging to it.
Similar to the construction of visual prototypes, we inter-
polate each superpixel at the size of the dense features and
perform a region pooling stage as defined in Eq. 2 to pro-
duce superpixel embeddings r; € RP+, i = 1,...,|R)|.
Then, for each superpixel embedding, we compute the co-
sine similarity against the representative prototypes of the
categories. We associate each pixel with the unique region
that includes it and we refer to this similarity in the uni-
modal space of the visual backbone as local similarity.

Combining Local and Global Similarities. While re-
trieved prototypes are linked with text, their feature vectors
show good local matching properties but weaker global se-
mantic capabilities. As correctly classifying pixels from a
semantic point of view is crucial in segmentation, we pro-
pose to combine the local similarities obtained at the super-
pixel level with a global similarity measure which refers to
the entire image. We compute this in the multimodal space
of a vision-language model (i.e., CLIP [34]), which instead
has good semantic classification capabilities.

Specifically, we embed the input image using the im-
age encoder of CLIP to produce an image embedding
i(I) € RPt. Then, we compute cosine similarities be-
tween the image embedding and all the category embed-
dings #(c;), i = 1,...,cs. Finally, we combine this
global similarity with the single local similarities associated
with class-agnostic regions. The final similarity between a
local region and a semantic class is therefore computed as

S('I"j,Ci) :ﬂl(T]?CZ)+(1_ﬂ)g(I7CZ)7 (5)

where r; indicates the local region, c; the semantic class,
and I the input image. Further, {(r;, ¢;) is the local similar-
ity between the region of interest and the class, and g(7, ¢;)
is the global similarity extracted from CLIP space. To ob-
tain the final segmentation mask, each region is then asso-
ciated with the semantic class with the highest similarity.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate FreeDA on the validation splits of
traditional semantic segmentation benchmarks, namely Pas-
cal VOC 2012 [11], Pascal Context [30], COCO Stuff [4],
Cityscapes [8], and ADE20K [50, 51]. In particular, the
validation sets of these datasets respectively contain 20, 59,
171, 150, and 19 semantic categories and 1,449, 5,104,
5,000, 2,000, and 500 images. In addition to these datasets
for which we do not consider pixels not belonging to any
category, we also validate our method when considering
them as part of an additional “unknown” class (also referred
to as “background” class in the literature). For these experi-
ments, we again employ Pascal VOC 2012 and Pascal Con-
text, and also include the COCO Objects dataset [4] which
is a variant of COCO-Stuff with 80 foreground categories
on the same validation split. To assess the segmentation
performance, we employ the mean Intersection-over-Union
(mIoU) on all the classes of each dataset.

Implementation Details. Textual sentences used as input
in our diffusion-augmented prototype generation pipeline
are taken from the COCO Captions dataset [7, 23]. We
consider all five captions available for each image, thus ob-
taining a large set of captions describing natural images that
can be used as input for a diffusion-based generative archi-
tecture. It is worth noting that we do not utilize the images
associated with these captions. To generate the collection
of visual prototypes, we employ Stable Diffusion v2.1 [36]
with 50 diffusion steps and a threshold v equal to 0.45. The
scalar weight « that combines the mean noun embeddings
and caption embeddings to form keys is equal to 0.9.

We use DINOv2 [33] pre-trained on the LVD-142M
dataset as the self-supervised visual backbone, using both
the ViT-B/14 and the ViT/L-14 versions, with an input im-
age size of 518 x 518. This leads to dense features with size
corresponding to 37 x 37. We also employ CLIP [34] as
the multimodal encoder using the original OpenAl weights,
on top of the ViT-B/16 and ViT-L/14 architectures. We use
the same CLIP model for both key embeddings and global
similarity computation, so that (i) we embed the arbitrary
categories at inference time just one time and (ii) we do not
need to load two different text encoders into memory.

To extract superpixels, we use the Felzenszwalb’s algo-
rithm [12]. We build and leverage an efficient exact retrieval
index through the faiss library [17] based on cosine sim-
ilarity. We consider the number of retrieved prototypes K
equal to 350 for all datasets and the ensembling weight 3
between local and global similarities equal to 0.8 for all
benchmarks except for Pascal VOC for which we use
equal to 0.7. More details are in the supplementary.

Evaluation Protocol. To perform all experiments, we fol-
low the unified evaluation protocol for unsupervised open-



Parameters (M) Similarity mloU

Model PAMR Dataset Total Trainable  Textual Visual VOC Context Stuff Cityscapes ADE
ReCo [38] X ImageNet1k* 313.0 0.0 X v 57.7 223 14.8 21.1 11.2
GroupViT [43] X CC12M+RedCaps* 55.8 55.8 v 79.7 234 153 11.1 9.2
MaskCLIP [52] X - 291.0 0.0 v X 74.9 26.4 16.4 12.6 9.8
TCL [6] X CC3M+CC12M* 178.3 21.7 v X 71.5 30.3 19.6 23.1 14.9
OVDift [18] X - 1,226.4 0.0 X v 81.7 33.7 - - 14.9
MaskCLIP [52] v - 291.0 0.0 v X 72.1 25.3 15.1 11.2 9.0
ReCo [38] v ImageNet1k* 313.0 0.0 X v 62.4 247 16.3 22.8 12.4
GroupViT [43] v CCI12M+YFCC* 55.8 55.8 v X 81.5 23.8 15.4 11.6 9.4
TCL [6] v CC3M+CCI12M* 178.3 21.7 v X 83.2 339 22.4 24.0 17.1
FreeDA (ViT-B) X COCO Captions* 236.1 0.0 X v 85.6 (+2.4) 43.1 (+9.2) 27.8 (+5.4) 36.7 (+12.7) 22.4 (+5.3)
FreeDA (ViT-L) X COCO Captions* 732.0 0.0 X v 87.9 (+4.7) 43.5 (+9.6) 28.8 (+6.4) 36.7 (+12.7) 23.2 (+6.1)

Table 1. Comparison with state-of-the-art unsupervised open-vocabulary semantic segmentation models on Pascal VOC [11], Pascal
Context [30], COCO Stuff [4], Cityscapes [8], and ADE20K [50, 51], without considering the unknown category. The markers 4 and Y

refer, respectively, to datasets used for training and support only.

vocabulary semantic segmentation established by Cha et
al. [6]. Specifically, we evaluate the model consid-
ering the class names from the default version of the
MMSegmentation toolbox. We resize the images to have
a shorter side equal to 448 and employ a sliding window
approach with a stride of 224 pixels.

4.2. Comparison with the State of the Art

We first compare FreeDA with recent state-of-the-art ap-
proaches for unsupervised open-vocabulary semantic seg-
mentation. Specifically, we include ReCo [38] and OVD-
iff [18] that, similarly to our approach, exploit the arbitrary
input categories to obtain a set of visual references. While
ReCo curates an archive based on ImageNetlk [9], OVD-
iff generates a set of synthetic references at inference time
by conditioning on a fixed prompt template, without ne-
cessitating external support data. Also, we compare with
MaskCLIP [52], which introduces some modifications to
the CLIP architecture to exploit its multimodal embedding
space, and GroupViT [43] and TCL [6] that rely on exten-
sive contrastive training on large-scale datasets to learn a
textual-visual alignment. When considering segmentation
benchmarks with the background class, we also include
ViewCo [35], SegCLIP [27], and OVSegmentor [44] that,
analogously to GroupViT and TCL, are based on natural
language supervision via contrastive learning paradigms.
Table 1 shows the results on the five benchmarks with-
out the unknown category (i.e., Pascal VOC, Pascal Con-
text, COCO Stuff, Cityscapes, and ADE20K). We report
the performance of two variants of our approach: one based
on DINOvV2 ViT-B/14 and CLIP ViT-B/16 and the other
based on DINOv2 ViT-L/14 and CLIP ViT-L/14, respec-
tively denoted as FreeDA (ViT-B) and FreeDA (ViT-L). For
this comparison, since the usage of superpixels to improve
the adherence of predictions on the image can be interpreted
as a mask refinement step, we also report the performance
of considered competitors when using the Pixel-Adaptive
Mask Refinement (PAMR) proposed in [3] to refine the fi-

mloU

Model PAMR  Training Dataset voC Context  Object
GroupViT [43] CCI12M+RedCaps 50.4 18.7 27.5
MaskCLIP [52] - 38.8 23.6 20.6
ReCo [38] - 25.1 19.9 15.7
ViewCo [35] CCI12M+YFCC 524 23.0 235
SegCLIP [27] CC3M+COCO Captions  52.6 24.7 26.5
TCL [6] CC3M+CCI2M 51.2 243 304
OVSegmentor [44] CC4M 53.8 20.4 25.1
GroupViT [43] v CCI12M+YFCC 51.1 19.0 27.9
MaskCLIP [52] 4 - 372 22.6 18.9
TCL [6] v CC3M+CCI12M 55.0 30.4 31.6
FreeDA (ViT-L) 55.4 (+0.4) 38.3 (+7.9) 37.4 (+5.8)

Table 2. Comparison with state-of-the-art unsupervised open-
vocabulary semantic segmentation models on the validation sets
of Pascal VOC [11], Pascal Context [30], and COCO Object [4],
when considering the additional unknown category.

nal predictions. As it can be seen, both variants of our so-
lution achieve the best results on all datasets, surpassing all
the competitors by a consistent margin. Specifically, when
comparing with methods without PAMR, FreeDA achieves
an average improvement of 10.0 and 10.9 mloU points with
respect to TCL [6], respectively for the ViT-B and ViT-L
variants. This performance improvement is confirmed also
when comparing FreeDA with PAMR-based approaches,
leading to an average increase of 7.0 and 7.9 mloU points
compared to the best-performing method.

In Table 2, we instead report the results on the three
segmentation datasets, namely Pascal VOC, Pascal Con-
text, and COCO Object, used to validate the effectiveness of
segmentation methods when also considering the additional
“unknown” category. Following [43], we apply a threshold
on the final similarities to detect pixels that do not belong
to any of the provided input categories. In particular, we
apply the threshold on the similarity values obtained after
ensembling local and global similarities. For this experi-
ment, we restrain the comparison to methods that do not
employ specific techniques to take into account the back-
ground of the scene but instead perform a threshold as done
in our case. Notably, FreeDA achieves the best results on



mloU

mloU
Local Backbone Textual/Global Backbone VOC Cityscapes ADE
DINO (ViT-B/16) CLIP (ViT-B/16) 80.8 30.6 17.0
DINOvV2 (ViT-B/14) CLIP (ViT-B/16) 85.6 36.7 22.4
DINOV2 (ViT-L/14) CLIP (ViT-B/16) 86.9 36.3 223
DINOV2 (ViT-L/14) CLIP (ViT-L/14) 87.9 36.7 23.2

Backbone Global Similarity Superpixels VOC Cityscapes ADE
CLIP (ViT-B/16) X X 61.3 21.3 134
DINO (ViT-B/16) X X 34.2 26.0 9.5

DINOV2 (ViT-B/14) X X 75.6 34.4 20.7
DeiT-II (ViT-L/16) X X 54.8 21.8 11.4
CLIP (ViT-L/14) X X 459 20.0 114
DINOV2 (ViT-L/14) X X 70.2 332 19.5
DINO (ViT-B/16) v X 80.4 27.8 16.5
DINOV2 (ViT-B/14) v X 86.2 35.0 21.9
DINOV2 (ViT-L/14) v X 87.2 34.5 21.6
DINO (ViT-B/16) v v 81.1 29.8 17.3
DINOV2 (ViT-B/14) v v 87.0 36.6 23.2
DINOV2 (ViT-L/14) v v 87.9 36.7 23.2

Table 3. Ablation study results using different visual backbones
and validating the contribution of the key components of our
solution. Results are reported on the validation sets of Pascal
VOC [11], Cityscapes [8], and ADE20K [50, 51].

all three benchmarks, surpassing both methods that do not
employ any mask refinement stages and approaches that in-
stead refine their predictions using PAMR [3]. In particular,
FreeDA reaches 55.4, 38.3, and 37.4 mloU points respec-
tively on Pascal VOC, Pascal Context, and COCO Object,
which correspond to an improvement of 0.4, 7.9, and 5.8
points with respect to the best method (i.e., TCL [6] using
PAMR as mask refinement technique).

These results highlight the effectiveness of our solution
which, despite being completely training-free, achieves a
new state of the art for unsupervised open-vocabulary se-
mantic segmentation on all eight considered benchmarks.
Some qualitative results are shown in Figure 4.

4.3. Ablation Studies and Analyses

We then evaluate the contribution of each component em-
ployed in our final solution and the effectiveness of different
backbones to extract visual and textual features.

Effect of Changing the Visual Backbone. We first con-
sider the performance of our approach when using different
visual backbones to compute local similarities. In particu-
lar, we evaluate DeiT-III [40] pre-trained for image classifi-
cation on ImageNetlk and based on ViT-L/16, CLIP [34]
in both its ViT-B/16 and ViT-L/14 versions, DINO [5]
based on the ViT-B/16 architecture, and our final choice DI-
NOv2 [33] using both the variant based on ViT-B/14 and the
one based on ViT-L/14. Given that different input and patch
sizes can lead to different output feature sizes, we resize
all images to 518 x 518 when using visual backbones with
a patch size of 14 and 592 x 592 when employing visual
backbones with a path size of 16, thus always having fea-
tures with a spatial size equal to 37 x37. To validate only the
role of different visual backbones, we apply them without
global similarities and without superpixels to extract mask
proposals. When considering the variant without superpix-
els, we directly compute the local similarities on the dense

Table 4. Performance analysis when employing visual and textual
backbones of different sizes.

features and we interpolate them to the original image size.

Results are reported in the upper part of Table 3, using
the CLIP ViT-L/14 model to extract textual features. As
it can be noticed, DINOv2 exhibits the best performance
among both architectures based on ViT-B and ViT-L, con-
firming the power of self-supervised features in this setting.

Adding Global Similarities and Superpixels. To evalu-
ate the contribution of global features and superpixel-based
mask proposals, we report in the lower part of Table 3 the
performance of FreeDA first adding only global similarities
and then also including superpixels to extract mask propos-
als. Both strategies give a consistent contribution to the final
performance, also when considering different visual back-
bones to compute local similarities. For example, when
using DINOvV2, global features bring an improvement of
0.9 mIoU points on the ADE20K dataset, while superpix-
els further enhance the final performance by an additional
1.6 mloU points. Additionally, it is worth noting that the
contribution of global similarities is more significant in Pas-
cal VOC where images are characterized by the presence of
a single or few objects occupying large areas of the scene,
thus favoring global features instead of local ones.

Impact of Backbone Size. In Table 4 we investigate how
much using a ViT-Large architecture to extract both visual
and textual features increases the performance compared to
a ViT-Base model. As also demonstrated by the complete
results of the two variants of FreeDA reported in Table 1,
this corresponds to around 2.3 mloU points on Pascal VOC
when employing DINOvV2 to extract local features, while
obtaining similar performance on Cityscapes and ADE20K.

Superpixel Algorithms and Prototype Aggregation
Strategies. In Table 5, we instead validate the choice of
employing Felzenszwalb’s algorithm [12] to extract super-
pixels by comparing it with three widely adopted superpixel
proposal algorithms, namely Watershed [15], SLIC [2], and
SEEDS [41]. While different versions of superpixel algo-
rithms lead to similar performance, the usage of Felzen-
szwalb’s algorithm helps to further improve the results on
all three datasets considered. In addition to comparing
different superpixel extraction strategies, we also include
the results obtained using PAMR [3] as a mask refinement
method. For this experiment, we first compute local similar-
ities for dense features and ensemble them with the global
similarity, then we apply PAMR to refine the resulting seg-



Ground Truth

Figure 4. Qualitative results of FreeDA in comparison with TCL [6], with and without global similarities and superpixels.

mloU
Model Superpixels VOC Cityscapes ADE
w/ mean embedding (PAMR) - 87.0 344 23.0
w/ mean embedding Watershed 87.0 327 21.8
w/ mean embedding SLIC 87.3 335 21.8

SEEDS 87.5 32.3 22.4

w/ mean similarity Felzenszwalb ~ 79.5 29.3 18.8
w/ max similarity Felzenszwalb ~ 82.0 26.2 17.6
FreeDA (w/ mean embedding) Felzenszwalb ~ 87.9 36.7 23.2

w/ mean embedding

Table 5. Performance analysis using different algorithms to com-
pute superpixels and different prototypes aggregation strategies.

mentation masks. Notably, employing superpixels to extract
mask proposals leads to improved final results.

To validate the aggregation strategy used in FreeDA, in
which we aggregate retrieved prototypes by computing their
average embedding (i.e., “mean embedding” in Table 5),
we compare it with two different approaches based on first
computing local similarities for all retrieved prototypes and
then aggregating them by considering the mean or the max-
imum (i.e., “mean similarity” and “max similarity”). Com-
puting the average embedding of all retrieved prototypes
brings the best results across all datasets.

Retrieval Performance Analysis. Finally, we analyze the
performance when varying the retrieval parameters. Since
our method leverages an exact retrieval index, we first val-
idate how much using an approximate search impacts the
performance. Specifically, the left plot of Figure 5 shows
the trade-off between speed and performance when using a
graph-based HNSW (Hierarchical Navigable Small World)
index [29]. We report the CPU times to search the most
similar K = 350 key embeddings when changing the depth
of exploration in the index, and their corresponding mloU
scores. This parameter controls the size of the dynamic list
of candidate nearest neighbors that are explored during the
search process. On the right plot of Figure 5, we instead
show the performance variation when changing the number
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Figure 5. Retrieval results when using an approximate index (left)
and varying the number of retrieved key-prototype pairs (right).

K of searched keys. Results are reported on the ADE20K
dataset. As it can be seen, using an approximate index only
partially deteriorates the performance while consistently re-
ducing time computation. On the same line, increasing the
number of retrieved key embeddings does not improve the
final performance, while retrieving a reduced number of
items partially leads to lower results.

5. Conclusion

We presented FreeDA, a training-free approach for unsuper-
vised open-vocabulary segmentation. Our approach lever-
ages visual prototypes and textual keys extracted offline
with diffusion-augmented generation and exploits local-
global similarities at inference time. Experimentally, we
achieve state-of-the-art results on five different datasets.
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In this supplementary material, we delve into additional
implementation details pertaining to our prototype genera-
tion process, offering information to facilitate reproducibil-
ity. A comprehensive list of the used textual prompts is pre-
sented to clarify the experimental setup. We systematically
explore the impact of varying superpixel hyperparameters
on the overall performance of our proposed model. We ex-
amine the combined influence of entire caption contexts and
word embeddings during prototype generation. Our find-
ings highlight the effectiveness of this approach, particu-
larly for categories consisting of multiple words. We also
investigate the impact of employing the unimodal backbone
for both local and global matching. Our results demonstrate
the advantage of leveraging a multimodal feature extractor
like CLIP for global matching. To enhance interpretabil-
ity, we include visual examples showcasing captions, gener-
ated images, and their corresponding attributions and binary
masks. Additionally, we include qualitative results across
all the considered benchmark datasets. We conduct a thor-
ough examination of both successful cases and instances of
failure, supplementing our analysis with “into the wild” ex-
amples—segmentation results obtained by prompting our
model with diverse free-form textual inputs.

A. Additional Implementations Details

Textual Templates. To encode through the CLIP text en-
coder both the nouns extracted during prototype generation
and the input categories utilized at inference time, we em-
ploy the following set of templates 7, introduced in [34]:

itap of a {}.

a bad photo of the {}.

a origami {}.

a photo of the large {}.

a {} in a video game.

art of the {}.

a photo of the small {}.
As discussed in [34], these templates provide a powerful
means of contextualizing textual input, making them partic-
ularly well-suited for our application in the context of pro-
totype generation and inference.

Prototypes generation. The foundation of our prototype
generation lies in the utilization of a dataset of images
paired with captions. To ensure the reproducibility of our
results, we detail the negative prompts employed during
the generation of images with Stable Diffusion in Table 6.
These negative prompts play a crucial role in guiding the
generation process, aiming to produce prototypes that are
realistic and high-quality. The prototypes generation is per-
formed offline and requires around 5.2 sec for each COCO
caption. During inference, computing a category embed-
ding and performing prototypes retrieval takes around 10.8
ms and 12.9 ms for the Base and Large versions of FreeDA.

11

3d abstract art
asymmetric bad anatomy bad art

bad proportions blurry canvas frame
cartoon cartoonish cgi

cloned face colorless computer graphic
cropped cut off deformed
dehydrated digital digital art
disfigured doll duplicate
error extra arms extra fingers
extra legs extra limbs fused fingers
Sfuzzy grainy graphic

gross proportions  inaccurate Jjpeg artifacts
long neck low quality low-resolution
lowres malformed limbs misshaped
missing arms missing legs morbid
mutant mutated mutated hands
mutation mutilated octane

out of focus out of frame oversaturated
photoshop poorly drawn face  poorly drawn hands
render retro signature

text too many fingers ugly

unreal unreal engine unrealistic
username video game watermark

weird colors worst quality

Table 6. Negative prompts employed in Stable Diffusion during
prototypes generation.

B. Additional Experiments and Analyses

Effect of Superpixel Parameters. Felzenszwalb et al. [12]
introduced an efficient superpixel algorithm that employs
a graph-based approach. The algorithm initiates by con-
structing a graph representation of the image, where each
pixel serves as a node, and edges connect neighboring pix-
els. Edge weights are determined based on the RGB color
space differences between adjacent pixels. Consequently,
connected components, initially established as individual
components for each pixel, are progressively merged. The
growth of each component is regulated by the scale of ob-
servation parameter k. The algorithm also incorporates two
additional parameters: the diameter of the Gaussian fil-
ter used for pre-processing to enhance image smoothness
and counter artifacts (o), and the enforced minimum size
of superpixels, u. We employ the implementation of the
skimage! library.

In Table 7, we report the parameter values employed on
the examined datasets. Figure 6 further shows the perfor-
mance variations obtained when altering these parameters
on the ADE20K dataset [50, 51]. Notably, minor variations
in these parameters have negligible effects on final perfor-
mance. However, imposing large superpixels through min-
imum size or scale of observation can significantly degrade
the results.

lhttps ://scikit-image.org/
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Dataset m o k

Pascal VOC 100 0.7 20
Pascal Context 100 1.0 20
COCO Stuff 100 1.0 100
Cityscapes 50 05 20
ADE20K 100 1.0 20

Table 7. Parameters employed for Felzenszwalb’s algorithm on
each dataset.
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Figure 6. Effect of the variation of superpixel hyperparameters on
ADE20K, measured in terms of mloU.

Impact of caption context. In Section 3.1 of the main pa-
per, we outline our methodology for extracting textual key
embeddings. Specifically, we employ a linear combination
of the word embedding ¢ and the caption embedding &, con-
trolled by a parameter «. In our main results, we set o to
0.9 to effectively incorporate the textual context into the key
embedding.

In Table 8, we conduct an ablation study on this choice.
The case without caption context corresponds to setting «
to 1. It is noteworthy that the inclusion of textual con-
text proves to be particularly beneficial for input categories
that consist of more than one word, such as chest of
drawers. This scenario is prevalent in in-the-wild situa-
tions, thus emphasizing the practical utility of our approach
in diverse and real-world settings.

Impact of unimodal global matching. In Table 9, we
investigate the impact of employing DINOv2 for local
and global matching. Since DINOv2 embeddings are not
aligned with text, we compute global matching by using the
similarity between the cLs token of DINOv2 and the repre-
sentative visual prototypes of the categories. As can be ob-
served, the usage of a text-aligned CLIP backbone improves
performance w.r.t. the unimodal DINOv2 global features.

C. Explainability

A notable advantage of our prototype-based approach lies
in its inherent explainability, as the set of referring images
used to generate prototypes can be visualized a posteriori.
In our approach, in particular, we can visualize the gener-
ated images associated with the retrieved prototypes for a
given input category, along with the corresponding attribu-
tion maps and binary masks.

Figure 9 illustrates the explainability capabilities of our
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mloU
Caption Context Context Stuff ADE
X 43.1 274 222
FreeDA v 43.5 28.8 232

Table 8. Effect of full caption embeddings on the performance of
key embeddings.

Local Backbone Global Backbone VOC Cityscapes ADE
DINOvV2 (ViT-B/14) DINOV2 (ViT-B/14) 78.4 30.7 17.8
DINOV2 (ViT-L/14) DINOV2 (ViT-L/14) 74.4 335 20.3
DINOV2 (ViT-B/14) CLIP (ViT-B/16) 85.6 36.7 224
DINOV2 (ViT-L/14) CLIP (ViT-L/14) 87.9 36.7 23.2

Table 9. mloU results with DINOv2 for local/global matching.

solution, showcasing examples of retrieved prototypes for a
specified category, highlighted within the captions in which
the corresponding noun was mentioned. We further include
the corresponding generated images, attribution maps, and
binarized masks, providing a comprehensive view of the ex-
plainability achieved by our approach.

D. Additional Qualitative Results

Results on benchmark datasets. Figure 10 shwocases
additional qualitative results on Pascal VOC [11], Pas-
cal Context [30], COCO Stuff [4], Cityscapes [8], and
ADE20K [50, 51]. These qualitative samples offer a com-
prehensive view of the performance of our approach, and
highlight the versatility and effectiveness of our method
across a range of scenes and categories, reinforcing its ap-
plicability in various real-world scenarios.

In-the-wild results. Additionally, in Figure 7 we report a
collection of in-the-wild examples obtained by prompting
our model with diverse free-form textual inputs. Specifi-
cally, we extract noun chunks from sample captions of the
COCO Captions validation set using the spaCy” NLP li-
brary. After removing stop-words, the noun chunks are uti-
lized as input categories for segmenting the corresponding
images. These results extend our analysis beyond curated
datasets and demonstrate the adaptability and robustness of
our approach in handling real-world scenarios with varied
and unstructured textual descriptions.

Failure cases. Finally, in Figure 8 we report sample sce-
narios in which our model encounters challenges and ex-
hibits failure cases. The first row illustrates an image of a
TV displaying a video game. Owing to the strong seman-
tic correspondence properties at the token-level of DINOv2,
our model tends to segment individual elements shown on
the TV screen, thereby impacting the overall segmentation
performance for the TV class. The second row of the fig-
ure instead presents another failure case featuring an image
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Figure 7. In-the-wild segmentation results obtained by prompting our model with diverse free-form textual inputs.

Ground Truth FreeDA (ours)

Figure 8. Sample failure cases.

of a person atop a horse. However, the segmentation is in-
complete and only partially captures the person. This lim-
itation can be attributed to the prototypes corresponding to
horses ridden by persons, whose noisy binarized masks in-
clude their legs. Overall, these failure cases shed light on
areas where our model may struggle, emphasizing the need
for further refinement and consideration of complex visual
contexts.
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Figure 9. Examples of retrieved prototypes for a specified textual category. From left to right, we show the original COCO caption, the
corresponding generated image, the attribution map, and the binarized mask (area highlighted in red).
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Figure 10. Additional qualitative results of FreeDA in comparison with TCL [6], with and without global similarities and superpixels.
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